Transposons

Scientists have long known that transposons can fuse with established genes because they have seen the unique genetic signatures of transposons in a handful of them, but the precise mechanism behind these unlikely fusion events has largely been unknown. By analyzing genes with transposon signatures from nearly 600 tetrapods, the researchers found 106 distinct genes that may have fused with a transposon. The human genome carries 44 genes likely to have been born this way.

The structure of genes in eukaryotes is complicated, because their blueprints for making proteins are broken up by introns. These noncoding sequences are transcribed, but they get snipped out of the messenger RNA transcripts before translation into protein occurs. A transposon can occasionally hop into an intron and change what gets translated. In some of these cases, the protein made by the fusion gene is a mashup of the original product and the transposon’s splicing enzyme (transposase).

Once the fusion protein is created, “it has a ready-made set of potential binding sites scattered all over the genome”, because its transposase part is still drawn to transposons. The more potential binding sites for the fusion protein, the higher the likelihood that it changes gene expression in the cell, potentially giving rise to new functions. “These aren’t just new genes, but entire new architectures for proteins”.

2023-03-30: Introns might be parasitic

If introners find their way into hosts primarily through horizontal gene transfers in aquatic environments, that could explain the irregular patterns of big intron gains in eukaryotes. Terrestrial organisms aren’t likely to have the same bursts of introns, since horizontal transfer occurs far less often among them. The transferred introns could persist in genomes for many millions of years as permanent souvenirs from an ancestral life in the sea and a fateful brush with a deft genomic parasite.

Introners acting as foreign, invasive elements in genomes could also be the explanation for why they would insert introns so suddenly and explosively. Defense mechanisms that a genome might use to suppress its inherited burden of transposons might not work on an unfamiliar genetic element arriving by horizontal transfer.

Leave a comment