PDE AI

researchers at Caltech have introduced a new deep-learning technique for solving PDEs that is dramatically more accurate than deep-learning methods developed previously. It’s also much more generalizable, capable of solving entire families of PDEs—such as the Navier-Stokes equation for any type of fluid—without needing retraining. Finally, it is 1000x faster than traditional mathematical formulas. Now here’s the crux of the paper. Neural networks are usually trained to approximate functions between inputs and outputs defined in Euclidean space, your classic graph with x, y, and z axes. But this time, the researchers decided to define the inputs and outputs in Fourier space. Because it’s far easier to approximate a Fourier function in Fourier space than to wrangle with PDEs in Euclidean space, which greatly simplifies the neural network’s job. Cue major accuracy and efficiency gains: in addition to its huge speed advantage over traditional methods, their technique achieves a 30% lower error rate when solving Navier-Stokes than previous deep-learning methods.

Leave a comment