ML vulnerabilities

Identifying vulnerabilities in the ML model supply chain

we show that maliciously trained convolutional neural networks are easily backdoored; the resulting “BadNets” have state-of-the-art performance on regular inputs but misbehave on carefully crafted attacker-chosen inputs. Further, BadNets are stealthy, .i.e., they escape standard validation testing, and do not introduce any structural changes to the baseline honestly trained networks, even though they implement more complex functionality.

Leave a comment