EES argues that while the existing framework of evolutionary theory, known as the “modern synthesis,” is basically solid, it needs to be expanded to account for newly recognized drivers of evolution. One such driver is epigenetics — gene-expression changes that stem from exposure to, say, pesticides. While these epigenetic changes are not encoded in an organism’s genes, they do give rise to physical and behavioral differences that natural selection can act upon. We now have a better picture of the regulatory process on genes. Epigenetics changes the landscape in genetics because it’s not only the pure DNA sequence which influences what’s going on at the level of proteins and enzymes. There’s this whole other stuff, the other 95 percent of the genome, that acts like rheostats — you slide this thing up and down, you get more or less of this protein. It’s a critical thing in how much of this protein is going to be made. It’s interesting to think about the way in which cultural phenomena, which we used to think were things by themselves, can have this effect on how much messenger RNA is made, and therefore on many aspects of gene regulation.