The team developed a technique to remove mutated DNA from mitochondria, the small organelles that produce most of the chemical energy within a cell. There are 100s to 1000s of mitochondria per cell, each of which carries its own small circular DNA genome, called mtDNA, the products of which are required for energy production. Because mtDNA has limited repair abilities, normal and mutant versions of mtDNA are often found in the same cell, a condition known as heteroplasmy. Most people start off life with some level of heteroplasmy, and the levels of mutant mtDNA increase throughout life. When a critical threshold level of mutant mtDNA is passed, cells become nonfunctional or die.