the “Utah teapot,” as it’s affectionately known—has had an enormous influence on the history of computing, dating back to 1974, when computer scientist Martin Newell was a Ph.D. student at the University of Utah. The U of U was a powerhouse of computer graphics research then, and Newell had some novel ideas for algorithms that could realistically display 3D shapes—rendering complex effects like shadows, reflective textures, or rotations that reveal obscured surfaces. But, to his chagrin, he struggled to find a digitized object worthy of his methods. Objects that were typically used for simulating reflections, like a chess pawn, a donut, and an urn, were too simple. He needed more interesting models. Sandra suggested that he digitize the shapes of the tea service they were using, a simple Melitta set from a local department store. It was an auspicious choice: The curves, handle, lid, and spout of the teapot all conspired to make it an ideal object for graphical experiment. Unlike other objects, the teapot could, for instance, cast a shadow on itself in several places. Newell grabbed some graph paper and a pencil, and sketched it. The computer model proved useful for Newell’s own research, featuring prominently in his next few publications. But he and Blinn also took the important step of sharing their model publicly. As it turned out, other researchers were also starved for interesting 3D models, and the digital teapot was exactly the experimental test bed they needed. At the same time, the shape was simple enough for Newell to input and for computers to process. (Rumor has it some researchers even had the data points memorized!) And unlike many household items, like furniture or fruit-in-a-bowl, the teapot’s simulated surface looked realistic without superimposing an artificial, textured pattern.


