Towards a much more automated organic chemistry, a series of articles by Derek Lowe.
MIDA complexes have an unusual property: they stick to silica, even when eluted with MeOH/ether. But THF moves them right off. This trick allows something very useful indeed. It’s a universal catch-and-release for organic intermediates. And that, as the paper shows, opens the door to a lot of automated synthesis. The idea, the hope, is that if the field does become modular and mechanized, that it frees us up to do things that we couldn’t do before. Think about biomolecules: if peptides and oligonucleotides still had to be synthesized as if they were huge natural products, by human-wave-attack teams of day-and-night grad students, how far do you think biology would have gotten by now? Synthesizing such things was Nobel-worthy at first, then worth a PhD all by themselves, but now it’s a routine part of everyday work. Organic synthesis is heading down the exact same road
End of synthesis? You must be joking. This is not even close. As I tried (ineffectively) to make clear yesterday, I don’t think that this particular paper is The End. But it’s the first thing I’ve seen that makes me think that there is an end to a lot of traditional organic chemistry.
No software is yet producing “Whoa, look at that” syntheses. But let’s be honest: most humans aren’t, either. The upper reaches of organic synthesis can still produce such things – and the upper stratum of organic chemists can still produce new and starting routes even to less complex molecules. But seeing machine-generated synthesis coming along in its present form just serves to point out that it’s not so much that the machines are encroaching onto human territory, so much as pointing out that some of the human work has gradually become more mechanical.